

2023

ST. STEPHEN'S C.E. PRIMARY SCHOOL

Uxbridge Road, Shepherds Bush, London W12 8LH

This policy has been largely adapted from the White Rose Maths Hub Calculation Policy with further material added. It is a working document and will be revised and amended as necessary.

Addition: Year 1

Objective \& Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: partwhole model.	Use a part whole model. Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar.	Use the part whole diagram to move into the abstract. $4+3=7 \quad 10=6+4$
Starting at the bigger number and counting on.	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	Star at the larger number on the number line and count on in ones or in one jump to find the answer.	Place the larger number in your head and count on the smaller number to find your answer. $12+5=17$
Regrouping to make 10. This is an essential skill for column addition later.	Start with the bigger number and use the smaller number to make 10. Use ten frames. $6+5=11$	Use pictures or a number line. Regroup or partition the smaller number using the part whole model to make 10. $9+5=14$ $3+9=$ 14	If I am at seven, how many more do I need to make 10 ? How many more do I add on?
Represent \& use number bonds and related subtraction facts within 20	2 more than 5.		Emphasis should be on the language ' 1 more than 5 is equal to 6 .' ' 2 more than 5 is 7 .' ' 8 is 3 more than 5.'

Ofsted

Healthy School

Addition：Year 2

Objective \＆Strategy	Concrete	Pictorial	Abstract							
Adding multiples of ten．	Model using dienes and bead strings． 1020304050	Use representations for base ten．	$\begin{gathered} 20+30=50 \\ 70=50+20 \\ 40+\square=60 \end{gathered}$							
Use known number facts． Part whole．			$\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$							
Using known facts．		Children draw representations of H, T and O ． $\begin{aligned} \because+\because & = \\ \\|+\\| \\| & =\\| \\|\\| \\| \\ \square & =\text { 昌昌日 } \end{aligned}$	$3+4=7$ Leads to $30+40=70$ Leads to $300+400=700$							
Bar model．	$3+4=7$	$7+3=10$	$23+25=48$23 25 $?$							

HealthySchool

Objective \& Strategy	Concrete	Pictorial	Abstract
Add a two digit number and ones.	Use ten frame to make 'magic ten'. Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$	Use part whole and number line to model.	Explore related facts: $\begin{aligned} & 17+5=22 \\ & 5+17=22 \\ & 22-17=5 \\ & 22-5=17 \end{aligned} \quad$
Add a 2 digit number and tens.	Explore that the ones digit does not change. $25+10=35$		$\begin{gathered} 27+10=37 \\ 27+20=47 \\ 27+_{-}=57 \end{gathered}$
Add two 2-digit numbers.	Model using dienes, place value counters and numicon. $25+47$	Use number line and bridge ten using part whole if necessary.	$\begin{gathered} 20+40=60 \\ 5+7=12 \\ 60+12=72 \\ 25+47 \\ 20+5 \end{gathered}$
Add three 1-digit numbers.	Combine to make 10 first if possible, or bridge 10 then add third digit.	Regroup and draw representation.	Combine the two numbers that make/ bridge ten then add on the third. $\begin{aligned} 4+7+6 & =10+7 \\ & =17 \end{aligned}$

Healthy School

Addition: Year 3

Objective \& Strategy	Concrete	Pictorial	Abstract
Column Addition-no regrouping (friendly numbers) Add two or three 2 or 3digit numbers.		Children move to drawing the counters or dienes using a tens and one frame.	Add the ones first, then the tens, then the hundreds. $\begin{array}{r} 223 \\ +114 \\ \hline 337 \end{array}$
Column Addition with regrouping.		Children can draw a representation of the grid to further support their understanding, carrying the ten 	

Healthy Schoo

Ofsted
 Outstanding 2010 2011

Addition: Year 4-6

Objective \& Strategy	Concrete	Pictorial	Abstract
Y4-add numbers with up to 4 digits.	Children continue to use dienes or pv counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand.	Draw representations using place value grid with dienes or counters.	Continue from previous work to carry hundreds as well as tens. $\begin{array}{r} 3517 \\ +\quad 396 \\ \hline 3913 \end{array}$
Y5-add numbers with more than 4 digits. Add decimals with 2 decimal places, including money.	As year 4 but introducing decimal place value counters and model exchange for addition.	 6	Relate to money and measures.
Y6-add several numbers of increasing complexity Including adding money, measure and decimals with different numbers of decimal points.	As Year 5.	As Year 5.	

Ofstixt
Outstanding
20102011

Subtraction: Year 1

Objective \& Strategy	Concrete	Pictorial	Abstract
Taking away ones.	Use physical objects, counters, cubes etc to show how objects can be taken away. $6-4=2$ $4-2=2$	Cross out drawn objects to show what has been taken away. $15-3=12$	$\begin{gathered} 7-4=3 \\ 16-9=7 \end{gathered}$
Counting back.	Move objects away from the group, counting backwards. Move the beads along the bead string as you count backwards.	Count back in ones using a number line.	Put 13 in your head, count back 4. What number are you at?
Find the difference.	Compare objects and amounts.	Count on using a number line to find the difference.	Hannah has 12 sweets and her sister has 5 . How many more does Hannah have than her sister?

Offstited
Outsenaing

OUtstandidg 2010 2011

Objective \& Strategy	Concrete	Pictorial	Abstract
Represent and use number bonds and related subtraction facts within 20. Part whole model.	Link to addition. Use part whole model to model the inverse. If 10 is the whole and 6 is one of the parts, what s the other part? $10-6=4$	Use pictorial representations to show the part.	Move to using numbers within the part whole model.
Make 10	Make 14 on the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5. $14-9$	Jump back 3 first, then another 4 . Use ten as the stopping point. $13-7$ $13-7=6 \quad-4 \quad-3$	How many do we take off first to get to 10 ? How many left to take off? 16-8
Bar model	$5-2=3$		8 2 $10=8+2$ $10=2+8$ $10-2=8$ $10-8=2$

Subtraction: Year 2

Objective \& Strategy	Concrete	Pictorial	Abstract
Regroup a ten into ten ones.	Use a place value chart to show how to change a ten into ten ones, use the term 'exchange.'	$20-4=$	$20-4=16$
Partitioning to subtract without regrouping. 'Friendly numbers.'	Use Dienes to show how to partition the number when subtracting without regrouping. $34-13=21$	Children draw representations of Dienes and cross off. $43-21=22$	$43-21=22$
Make ten strategy. Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	Use a bead bar or bead strings to model counting to next ten and the rest. $34-28$	Use a number line to count on to next ten and then the rest.	$93-76=17$

HealthySchool

Subtraction: Year 3

Objective \& Strategy	Concrete	Pictorial	Abstract
Column subtraction without regrouping (friendly numbers)	Use base 10 or Numicon to model. $47-32$	Draw representations to support understanding.	Intermediate step may be needed to lead to clear subtraction understanding. $\begin{gathered} 47-24=23 \\ -20+7 \\ -20+4 \\ \hline 20+3 \\ \hline \end{gathered}$
Column subtraction with regrouping.	Begin with dienes or Numicon. Move to place value counters, modelling the exchange of a ten into ten ones.	Children may draw dienes or place value counters and cross off.	

Healthy Schoo

Ofsted
 Outstanding 2010 |2011

Subtraction: Year 4-6

Objective \& Strategy	Concrete	Pictorial	Abstract
Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtraction through context of money.	Model process of exchange using Numicon, dienes and then move to place value counters. $234-179$	Children to draw place value counters and show their exchange-see Year 3	Use exchanging. $\begin{array}{r} 2^{6} x^{\prime} 54 \\ -1562 \\ \hline 1192 \end{array}$
Year 5-Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal.	As Year 4	Children to draw place value counters and show their exchange-see Year 3	
Year 6-Subtract with increasingly large and more complex numbers and decimal values.			

Healthy School

Multiplication: Year 1

Objective \& Strategy	Concrete	Pictorial	Abstract
Doubling.	Use practical activities using manipultives including cubes and Numicon to demonstrate doubling.	Draw pictures to show how to double numbers. Double 4 is 8	Partition a number and then double each part before recombining it back together.
Counting in multiples.	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples. 1001090 ब10 10010 do 10 2 ${ }^{2} 2^{2}$ $\begin{array}{llllllll}2 & 6 & 8 & 10 & 12 & 14 & 16 & 18 \\ 20\end{array}$	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{gathered} 2,4,6,8,10 \\ 5,10,15,20,25,30 \end{gathered}$
Making equal groups and counting the total.	Use manipulatives to create equal groups.	Draw and make representations. Draw to show $2 \times 3=6$	$2 \times 4=8$

Healthy School
outsanding
2010|2011

Objective \& Strategy	Concrete	Pictorial	Abstract
Repeated addition.	Use different objects to add equal groups.	Use pictorials including number lines to solve problems. There are 3 sweets in one bag. How many sweets are in 5 bags altogether?	Write addition sentences to describe objects and pictures.
Understanding arrays.	Use objects laid out in arrays to find the answers to 2 lots 5,3 lots of 2 etc.	Draw representations of arrays to show understanding.	$\begin{aligned} & 3 \times 2=6 \\ & 2 \times 5=10 \end{aligned}$

Healthy School

Multiplication: Year 2

Objective \& Strategy	Concrete	Pictorial	Abstract
Doubling.	Model doubling using dienes and place value counters.	Draw pictures and representations to show how to double number.	Partition a number and then double each part before recombining it back together.
Counting in multiples of 2, $3,4,5$ and 10 from 0 . (Repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models. $5+5+5+5+5+5+5+5=40$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{gathered} 0,2,4,6,8,10 \\ 0,3,6,9,12,15 \\ 0,5,10,15,20,25,30 \end{gathered}$ $4 \times 3=\square$

Ofsť̌

 Outsitid2002011
201

Objective \& Strategy	Concrete	Pictorial	Abstract
Multiplication is commutative.	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ Use an array to write multiplication sentences and reinforce repeat addition. $\begin{gathered} 5+5+5=15 \\ 3+3+3+3+3=15 \\ 5 \times 3=15 \\ 3 \times 5=15 \end{gathered}$
Using the inverse. This should be taught alongside division, so pupils learn how they work alongside each other.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentences.

Multiplication: Year 3

Offixted
Outstanding
Healthy School

Multiplication: Year 4

Objective \& Strategy	Concrete	Pictorial	Abstract
Grid method recap from year 3 for 2 digits $x 1$ digit. Move to multiplying 3 digit numbers by 1 digit. (year 4 expectation)	Use place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows. Add up each column, starting with the ones making any exchanges needed.	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below.$24 \times 3=72$$X$ 20 4 3 00 0000 00 0000 00 12 60 1200 60 $\frac{12}{72}$	Start with multiplying by one digit numbers and showing the clear addition alongside the grid. $210+35=245$
Column multiplication.	Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$ It is important at this stage that they always multiply the ones first. The corresponding long multiplication is modelled alongside.	The grid method may be used to show how this relates to a formal written method. Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	327 $\times \quad 4$ 28 80 1200 1308327 $\times \quad 4$ 1308 12 This may lead to a compact method.

स) Wha

Healthy School

Multiplication: Year 5-6

Objective \& Strategy	Concrete	Pictorial					Abstract
Colum Multiplication for 3 and 4 digits $\times 1$ digit.	 It is important at this stage that they always Hundreds Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping.		\times	$\begin{array}{\|l\|} \hline 300 \\ \hline 1200 \\ \hline \end{array}$	$\frac{20}{80}$	7 28	327 $\times \quad 4$ 28 80 1200 1308327 $\times \quad 4$ 1308 This may lead to a compact method.
Column multiplication.	Manipulatives may still be used with the corresponding long multiplication modelled alongside.	Continue to solving. \square		e bar mo 10 100 30		support problem 8 80 24	1 8 \times 1 3 5 4 1 2 0 2 3 4 18×3 on the first row ($8 \times 3=24$, carrying the 2 for 20 , then 1×3) 18×10 on the 2 nd row. $\begin{array}{r} 1234 \\ \times \quad 16 \\ \hline 7404(1234 \times 6) \\ 12340 \\ \hline 19,744 \end{array}$ Show multiplying by 10 by putting zero in units first.

Healthy School

Multiplication: Year 6

Healthy School
outsanding
2010|2011

Division: Year 1

| Objective \& Strategy | Concrete | Pictorial |
| :--- | :--- | :--- | :--- | :--- |
| Division as sharing. | | |
| groups? | | |

Division: Year 2

Objective \& Strategy	Concrete	Pictorial	Abstract
Division as sharing.	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. $8 \div 2=4$ Children use bar modelling to show and support understanding. $12 \div 4=3$	$12 \div 3=4$
Division as grouping.	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use number lines for grouping. $12 \div 3=4$ Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. 20 l ? \square $20 \div 5=$ \qquad $5 \times$ \qquad $=20$	Divide 28 into 7 groups. How many are in each group? $28 \div 7=4$

Division: Year 3

Objective \& Strategy	Concrete	Pictorial	Abstract
Division as grouping.	Use cubes, counters, objects or place value counters to aid understanding.	Continue to use bar modelling to aid solving division problems. 20 ? \square \square \square $20 \div 5=$ \qquad $5 x$ \qquad $=20$	How many groups of 6 in 24? $24 \div 6=4$
Division with arrays.	Link division to multiplication by creating an array and thinking about the number sentences that can be created.	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $\begin{gathered} 7 \times 4=28 \\ 4 \times 7=28 \\ 28 \div 7=4 \\ 28 \div 4=7 \\ 28=7 \times 4 \\ 28=4 \times 7 \\ 4=28 \div 7 \\ 7=28 \div \end{gathered}$

Healthy School
outsanding
2010|2011

Objective \& Strategy	Concrete	Pictorial	Abstract
Division with remainders.	Divide objects between groups and see how much is left over. $14 \div 3=$ $38+6$ For larger num jumps can be	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder. remainder 2 Use bar models to show division with remainders. ut remainder: $5 s$ in $40 ?^{\circ}$ emainder: ers, when it becomes inefficient to count in single multip corded using known facts.	Complete written divisions and show the remainder using r. s remainder of 2 ples, bigger

Ofsted Outstanding
20102011

Division: Year 4-6

Objective \& Strategy	Concrete	Pictorial	Abstract
Divide at least 3 digit numbers by 1 digit.	Use place value counters to divide using the bus stop method alongside. Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for ten ones and then share the ones equally among the groups. We look how much in 1 group so the answer is 14.	Children can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder. Move onto divisions with a remainder. Finally move into decimal places to divide the total accurately.
Short Division.			

Healthy School

Long Division: Year 6

Step 1-a remainder in the ones.

Offited

Step 2-a remainder in the tens.

1. Divide	2. Multiply and subtract	3. Drop down the next digit
$\begin{array}{r} t \circ \\ 2 \longdiv { 2 } \\ \hline 2 \longdiv { 5 8 } \end{array}$ Two goes into 5 two times or 5 tens $\div 2=2$ whole tens but there is a remainder!	$\begin{gathered} t \circ \\ 2 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{1} \end{gathered}$ To find it, multiply $2 \times 2=4$, write that 4 under the five and subtract to find the remainder of 1 ten.	$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ -4 \downarrow \\ \hline 18 \end{array}$ Next, drop down the 8 of the ones next to the left over 1 ten. You combine the remainder ten with 8 ones and get 18 .

1. Divide	2. Multiply and subtract	3. Drop down the next digit
t o	t 。	t -
29	29	29
$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$
-4	-4	-4
18	18	18
	-18	-18
	0	0
ce 9 into the quotient.	Multiply $9 \times 2=18$, write that 18 under the 18 and subtract.	The division is over since there are no more digits in the dividend. The quotient is 29 .

Ofstuted
OUtstanding
201012011

Step 2-a remainder in any of the place values.

1. Divide	2. Multiply and subtract	3. Drop down the next digit
$\begin{gathered} \stackrel { h } { t } \circ _ { 1 } ^ { 2 } \longdiv { 2 7 8 } \end{gathered}$ Two goes into 2 one time or 2 hundreds $\div 2=1$ hundred.	$\begin{aligned} & { }^{h t \circ} \\ & 2 \longdiv { 2 7 8 } \\ & \frac{-2}{0} \end{aligned}$ Multiply $1 \times 2=2$. Write that under the two and subtract to find the remainder of zero.	$\begin{gathered} h t \circ \\ 18 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{07} \end{gathered}$ Next, drop down the 7 of the tens next to the zero.
1. Divide	2. Multiply and subtract	3. Drop down the next digit
$\begin{gathered} h: o \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \end{gathered}$ Divide 2 into 7. Place 3 into the quotient.	$\begin{gathered} n t o \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{0} 7 \\ -\quad 6 \\ \hline 1 \end{gathered}$ Multiply $3 \times 2=6$, write that 6 under the 7 and subtract to find the remainder of 1 ten.	$\begin{gathered} h t o \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ -18 \end{gathered}$ Next, drop down the 8 of the ones next to the 1 left over ten.
1. Divide	2. Multiply and subtract	3. Drop down the next digit
$\begin{gathered} h t 0 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -27 \\ \hline 07 \\ -\quad 6 \\ \hline 18 \end{gathered}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{gathered} h t o \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 18 \\ -18 \\ \hline 0 \end{gathered}$ Multiply $9 \times 2=18$, write that 18 under and subtract to find the remainder of zero.	$h t \circ$ 139 $2 \longdiv { 2 7 8 }$ $-\frac{2}{07}$ $-\quad 6$ 18 $\frac{-18}{0}$ There are no more digits to drop down. The quotient is 139.

Oftut

Healthy School

